A REGION DECOMPOSITION-BASED MULTI-OBJECTIVE PARTICLE SWARM OPTIMIZATION ALGORITHM

Author:

CHEN LEI1,LIU HAI-LIN1

Affiliation:

1. Guangdong University of Technology, Guangzhou, P. R. China

Abstract

In this paper, a novel multi-objective particle swarm optimization algorithm based on MOEA/D-M2M decomposition strategy (MOPSO-M2M) is proposed. MOPSO-M2M can decompose the objective space into a number of subregions and then search all the subregions using respective sub-swarms simultaneously. The M2M decomposition strategy has two very desirable properties with regard to MOPSO. First, it facilitates the determination of the global best (gbest) for each sub-swarm. A new global attraction strategy based on M2M decomposition framework is proposed to guide the flight of particles by setting an archive set which is used to store the historical best solutions found by the swarm. When we determine the gbest for each particle, the archive set is decomposed and associated with each sub-swarm. Therefore, every sub-swarm has its own archive subset and the gbest of the particle in a sub-swarm is selected randomly in its archive subset. The new global attraction strategy yields a more reasonable gbest selection mechanism, which can be more effective to guide the particles to the Pareto Front (PF). This strategy can ensure that each sub-swarm searches its own subregion so as to improve the search efficiency. Second, it has a good ability to maintain the diversity of the population which is desirable in multi-objective optimization. Additionally, MOPSO-M2M applies the Tchebycheff approach to determine the personal best position (pbest) and no additional clustering or niching technique is needed in this algorithm. In order to demonstrate the performance of the proposed algorithm, we compare it with two other algorithms: MOPSO and DMS-MO-PSO. The experimental results indicate the validity of this method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Exploration-Enhanced Gray Wolf Optimizer for a Mechanical Model of Braided Bicomponent Ureteral Stents;International Journal of Pattern Recognition and Artificial Intelligence;2022-03-14

2. Coherent energy projection of modulated signals from a sparse array;International Journal of RF and Microwave Computer-Aided Engineering;2020-02-04

3. A New Dominance Method Based on Expanding Dominated Area for Many-Objective Optimization;International Journal of Pattern Recognition and Artificial Intelligence;2019-02-19

4. A region division based diversity maintaining approach for many-objective optimization;Integrated Computer-Aided Engineering;2017-06-02

5. Hybrid Immune Clonal Particle Swarm Optimization Multi-Objective Algorithm for Constrained Optimization Problems;International Journal of Pattern Recognition and Artificial Intelligence;2017-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3