Human Action Recognition Using Motion History Image Based Temporal Segmentation

Author:

Lin Shou-Jen1,Chao Mei-Hsuan1,Lee Chao-Yang1,Yang Chu-Sing1

Affiliation:

1. Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan R. O. C.

Abstract

A human action recognition system based on image depth is proposed in this paper. Depth information features are not easily disturbed by noise; and due to this characteristic, the system can quickly extract foreground targets. Moreover, the target data, namely, depth and two-dimensional (2D) data, are projected to three orthogonal planes. In this manner, the action featured in the depth motion along the optical axis can clearly describe the trajectory. Based on the change of motion energy and the angle variations of motion orientations, the temporal segmentation (TS) method automatically segments the complex action into several simple movements. Three-dimensional (3D) data is further applied to acquire the three-viewpoint (3V) motion history trajectory, whereby a target’s motion is described through the motion history images (MHIs) from the 3Vs. The weightings corresponding to the gradients of the MHIs are included for determining the viewpoint that bests describe the target’s motion. In terms of feature extraction, the application of multi-resolution motion history histograms can effectively reduce the computational load and achieve a high recognition rate. Experimental results demonstrate that the proposed method can effectively solve the self-occlusion problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation of athletes’ motion detection and recovery technology based on monocular vision and biomechanics;Journal of Intelligent & Fuzzy Systems;2021-02-02

2. Signal Processing for Contactless Monitoring;Contactless Human Activity Analysis;2021

3. Quantum-Based Creative Generation Method for a Dancing Robot;Frontiers in Neurorobotics;2020-12-01

4. Multi-modal Emotion Feature Extraction;Emotion Recognition and Understanding for Emotional Human-Robot Interaction Systems;2020-11-14

5. A Review of Computational Approaches for Human Behavior Detection;Archives of Computational Methods in Engineering;2018-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3