Quantum-Based Creative Generation Method for a Dancing Robot

Author:

Mei Peng,Ding GangYi,Jin QianKun,Zhang FuQuan,Jiao YangFan

Abstract

In this paper, we propose a creative generation process model based on the quantum modeling simulation method. This model is mainly aimed at generating the running trajectory of a dancing robot and the execution plan of the dancing action. First, we used digital twin technology to establish data mapping between the robot and the computer simulation environment to realize intelligent controllability of the robot's trajectory and the dance movements described in this paper. Second, we conducted many experiments and carried out a lot of research into information retrieval, information fidelity, and result evaluation. We constructed a multilevel three-dimensional spatial quantum knowledge map (M-3DQKG) based on the coherence and entangled states of quantum modeling and simulation. Combined with dance videos, we used regions with convolutional neural networks (R-CNNs) to extract character bones and movement features to form a movement library. We used M-3DQKG to quickly retrieve information from the knowledge base, action library, and database, and then the system generated action models through a holistically nested edge detection (HED) network. The system then rendered scenes that matched the actions through generative adversarial networks (GANs). Finally, the scene and dance movements were integrated, and the creative generation process was completed. This paper also proposes the creativity generation coefficient as a means of evaluating the results of the creative process, combined with artificial brain electroenchalographic data to assist in evaluating the degree of agreement between creativity and needs. This paper aims to realize the automation and intelligence of the creative generation process and improve the creative generation effect and usability of dance movements. Experiments show that this paper has significantly improved the efficiency of knowledge retrieval and the accuracy of knowledge acquisition, and can generate unique and practical dance moves. The robot's trajectory is novel and changeable, and can meet the needs of dance performances in different scenes. The creative generation process of dancing robots combined with deep learning and quantum technology is a required field for future development, and could provide a considerable boost to the progress of human society.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference103 articles.

1. Quantum-theoretic modeling in computer science;Aerts;Int. J. Theor. Phys,2019

2. Emotions: the spinal cord of the creative thinking process;Agnoli,2019

3. Next generation em simulation technique;Arima;Games,2015

4. Quantum information and computation;Bennett;Nature,2000

5. Entropic uncertainty and measurement reversibility;Berta;New J. Phys.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Creativity and Cognition in Humans and Robots;Journal of Artificial Intelligence and Consciousness;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3