Day-Ahead Prediction of Wind Speed with Deep Feature Learning

Author:

Wan Jie1,Liu Jinfu1,Ren Guorui1,Guo Yufeng1,Yu Daren1,Hu Qinghua2

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, 150001 Harbin, Heilongjiang, P. R. China

2. School of Computer Science and Technology, Tianjin University, 300072 Tianjin, P. R. China

Abstract

Day-ahead prediction of wind speed is a basic and key problem of large-scale wind power penetration. Many current techniques fail to satisfy practical engineering requirements because of wind speed's strong nonlinear features, influenced by many complex factors, and the general model's inability to automatically learn features. It is well recognized that wind speed varies in different patterns. In this paper, we propose a deep feature learning (DFL) approach to wind speed forecasting because of its advantages at both multi-layer feature extraction and unsupervised learning. A deep belief network (DBN) model for regression with an architecture of 144 input and 144 output nodes was constructed using a restricted Boltzmann machine (RBM). Day-ahead prediction experiments were then carried out. By comparing the experimental results, it was found that the prediction errors with respect to both size and stability of a DBN model with only three hidden layers were less than those of the other three typical approaches including support vector regression (SVR), single hidden layer neural networks (SHL-NN), and neural networks with three hidden layers (THL-NN). In addition, the DBN model can learn and obtain complex features of wind speed through its strong nonlinear mapping ability, which effectively improves its prediction precision. In addition, prediction errors are minimized when the number of DBN model's hidden layers reaches a threshold value. Above this number, it is not possible to improve the prediction accuracy by further increasing the number of hidden layers. Thus, the DBN method has a high practical value for wind speed prediction.

Funder

National Program on Key Basic Research Project (973 Program) of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3