Affiliation:
1. College of Computer Science and Technology, Beijing University of Technology, Beijing, P. R. China
2. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, P. R. China
Abstract
To improve the accuracy, reduce the time consumption and obtain the number of faults, a fault detection method based on AP (affinity propagation) clustering and PCA (principal component analysis) was proposed. Firstly, discontinuous points in seismic horizons were searched out by the connected component labeling method. Secondly, the AP clustering algorithm was used to cluster the discontinuous points and the points of the same cluster were used to determine a fault, meanwhile, the faults existing in a seismic section were quantified. Finally, the PCA was adopted to calculate the principal direction of the discontinuous points contained in the same cluster. As a result, the corresponding cluster center and the principal direction determined a straight line, and the part that intercepted by the clustered edge was the fault we wanted. In the proposed method, the time consumption of correlation calculation of the traditional method was reduced; the computing work was simplified and the number of the faults in the seismic section was obtained. To confirm the feasibility and advancement of the proposed method, comparative experiments were done on the seismic model data and the real seismic section. The results show that the accuracy of the proposed method was better and the time cost was greatly reduced.
Funder
National Natural Science Foundation of China
Beijing Natural Science Foundation
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献