A Novel Intelligent Method for Bearing Fault Diagnosis Based on EEMD Permutation Entropy and GG Clustering

Author:

Hou JingbaoORCID,Wu Yunxin,Gong HaiORCID,Ahmad A. S.ORCID,Liu LeiORCID

Abstract

For a rolling bearing fault that has nonlinearity and nonstationary characteristics, it is difficult to identify the fault category. A rolling bearing clustering fault diagnosis method based on ensemble empirical mode decomposition (EEMD), permutation entropy (PE), linear discriminant analysis (LDA), and the Gath–Geva (GG) clustering algorithm is proposed. Firstly, we decompose the vibration signal using EEMD, and several inherent modal components are obtained. Then, the permutation entropy values of each modal component are calculated to get the entropy feature vector, and the entropy feature vector is reduced by the LDA method to be used as the input of the clustering algorithm. The data experiments show that the proposed fault diagnosis method can obtain satisfactory clustering indicators. It implies that compared with other mode combination methods, the fault identification method proposed in this study has the advantage of better intra-class compactness of clustering results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3