Lung Health Analysis: Adventitious Respiratory Sound Classification Using Filterbank Energies

Author:

Mukherjee Himadri1,Salam Hanan1,Santosh KC2ORCID

Affiliation:

1. SMART Lab, Department of Computer Science, New York University, Abu Dhabi, UAE

2. KC’s Pattern Analysis & Machine Learning (PAMI), Research Lab – Computer Science, University of South Dakota, Vermillion, SD 57069, USA

Abstract

Audio-based healthcare technologies are among the most significant applications of pattern recognition and Artificial Intelligence. Lately, a major chunk of the World population has been infected with serious respiratory diseases such as COVID-19. Early recognition of lung health abnormalities can facilitate early intervention, and decrease the mortality rate of the infected population. Research has shown that it is possible to automatically monitor lung health abnormalities through respiratory sounds. In this paper, we propose an approach that employs filter bank energy-based features and Random Forests to classify lung problem types from respiratory sounds. The adventitious sounds, crackles and wheezes appear distinct to the human ear. Moreover, different sounds are characterized by different frequency ranges that are dominant. The proposed approach attempts to distinguish the adventitious sounds (crackles and wheezes) by modeling the human auditory perception of these sounds. Specifically, we propose a respiratory sounds representation technique capable of modeling the dominant frequency range present in such sounds. On a publicly available dataset (ICBHI) of size 6898 cycles spanning over 5[Formula: see text]h, our results can be compared with the state-of-the-art results, in distinguishing two different types of adventitious sounds: crackles and wheezes.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3