CovNet: A Transfer Learning Framework for Automatic COVID-19 Detection From Crowd-Sourced Cough Sounds

Author:

Chang Yi,Jing Xin,Ren Zhao,Schuller Björn W.

Abstract

Since the COronaVIrus Disease 2019 (COVID-19) outbreak, developing a digital diagnostic tool to detect COVID-19 from respiratory sounds with computer audition has become an essential topic due to its advantages of being swift, low-cost, and eco-friendly. However, prior studies mainly focused on small-scale COVID-19 datasets. To build a robust model, the large-scale multi-sound FluSense dataset is utilised to help detect COVID-19 from cough sounds in this study. Due to the gap between FluSense and the COVID-19-related datasets consisting of cough only, the transfer learning framework (namely CovNet) is proposed and applied rather than simply augmenting the training data with FluSense. The CovNet contains (i) a parameter transferring strategy and (ii) an embedding incorporation strategy. Specifically, to validate the CovNet's effectiveness, it is used to transfer knowledge from FluSense to COUGHVID, a large-scale cough sound database of COVID-19 negative and COVID-19 positive individuals. The trained model on FluSense and COUGHVID is further applied under the CovNet to another two small-scale cough datasets for COVID-19 detection, the COVID-19 cough sub-challenge (CCS) database in the INTERSPEECH Computational Paralinguistics challengE (ComParE) challenge and the DiCOVA Track-1 database. By training four simple convolutional neural networks (CNNs) in the transfer learning framework, our approach achieves an absolute improvement of 3.57% over the baseline of DiCOVA Track-1 validation of the area under the receiver operating characteristic curve (ROC AUC) and an absolute improvement of 1.73% over the baseline of ComParE CCS test unweighted average recall (UAR).

Publisher

Frontiers Media SA

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3