Affiliation:
1. Department of Engineering, University of Messina, 98166 Messina, Italy
2. Department of Mathematics, Aligarh Muslim University, Aligarh, India
Abstract
Let R be a prime ring of characteristic different from 2, Z(R) its center, L a Lie ideal of R, and m, n, s, t ≥ 1 fixed integers with t ≤ m + n + s. Suppose that α is a non-trivial automorphism of R and let Φ(x, y) = [x, y]t – [x, y]m [α([x, y]),[x, y]]n [x, y]s. Thus, (a) if Φ(u, v) = 0 for any u, v ∈ L, then L ⊆ Z(R); (b) if Φ(u, v) ∈ Z(R) for any u, v ∈ L, then either L ⊆ Z(R) or R satisfies s4, the standard identity of degree 4. We also extend the results to semiprime rings.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory