Author:
Bell H. E.,Martindale W. S.
Abstract
AbstractLet R be a ring with center Z, and S a nonempty subset of R. A mapping F from R to R is called centralizing on S if [x, F(x)] ∊ Z for all x ∊ S. We show that a semiprime ring R must have a nontrivial central ideal if it admits an appropriate endomorphism or derivation which is centralizing on some nontrivial one-sided ideal. Under similar hypotheses, we prove commutativity in prime rings.
Publisher
Canadian Mathematical Society
Cited by
179 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献