Thermodynamics of d-dimensional charged AdS (Anti-de sitter) black holes: Hamiltonian approach and Clapeyron equation

Author:

Haldar Amritendu1,Biswas Ritabrata2ORCID

Affiliation:

1. Department of Physics, Sripat Singh College, Jiaganj, Murshidabad 742123, India

2. Department of Mathematics, The University of Burdwan, Golapbag Academic Complex, Burdwan 713104, Purba Burdwan, West Bengal, India

Abstract

The study of thermodynamics in the view of the Hamiltonian approach is the newest tool to analyze the thermodynamic properties of the black holes (BHs). In this paper, we investigate the thermodynamics of d-dimensional [Formula: see text] asymptotically Anti-de Sitter (AdS) BHs. A thermodynamic representation based on symplectic geometry is introduced in this paper. We extend the thermodynamics of d-dimensional charged AdS BHs in the views of a Hamiltonian approach. Firstly, we study the thermodynamics in reduced phase space and correlate with the Schwarzschild solution. Then we enhance it in the extended phase space. In an extended phase space, the thermodynamic equations of state are stated as constraints. We apply the canonical transformation to analyze the thermodynamics of the said type of BHs. We plot [Formula: see text]-[Formula: see text] diagrams for different dimensions d taking the temperatures [Formula: see text], [Formula: see text] and [Formula: see text] and analyze the natures of the graphs and the dependences on d. In these diagrams, we point out the regions of coexistence. We also examine the phase transition by applying “Maxwell’s equal area law” of the said BHs. Here, we find the regions of coexistence of two phases which are also depicted graphically. Finally, we derive the “Clapeyron equation” and investigate the latent heat of isothermal phase transition.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3