Continuous phase transition of the de Sitter spacetime with charged black holes and cloud of strings and quintessence*

Author:

Zhen 甄 Hai-Long 海龙,Du 杜 Yun-Zhi 云芝,Li 李 Huai-Fan 怀繁,Li 李 Xin-Ping 新平,Zhang 张 Li-Chun 丽春

Abstract

Abstract Recently, some meaningful results have been obtained by studying the phase transition, critical exponents, and other thermodynamical properties of different black holes. Especially for the Anti-de Sitter (AdS) black holes, their thermodynamical properties nearby the critical point have attracted considerable attention. However, there exists little work on the thermodynamic properties of the de Sitter (dS) spacetime with black holes. In this paper, based on the effective thermodynamical quantities and the method of the Maxwell's equal-area law, we explore the phase equilibrium for the de Sitter spacetime with the charged black holes and the cloud of string and quintessence (i.e., C-dSSQ spacetime). The boundaries of the two-phase coexistence region in both and diagrams are obtained. The coexistent curve and the latent heat of phase transition for this system are also investigated. Furthermore, we analyze the effect of parameters (the state parameter ω and the ratio of two horizon radii / ) on the two-phase coexistence region boundary. The results indicate that the phase transition in C-dSSQ spacetime is analogous to that in a van der Waals fluid (vdw) system, which is determined by the electrical potential at the horizon. These results are helpful for understanding the basic properties of black holes and are also of great value for the establishment of quantum gravity.

Funder

Scientific Innovation Foundation of the Higher Education Institutions of Shanxi Province

Science Technology Plan Project of Datong City

National Natural Science Foundation of China

Science Foundation of Shanxi Datong University

Teaching Reform Project of Shanxi Datong University

Publisher

IOP Publishing

Subject

Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3