Radical scavenging activity of hydroxycinnamic acids in polar and nonpolar solvents: A computational investigation

Author:

Mansouri Hadjer1,Mekelleche Sidi Mohamed1ORCID

Affiliation:

1. Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, BP 119, Tlemcen 13000, Algeria

Abstract

The aim of this work is to perform a computational study of the radical scavenging activity of a series of common hydroxycinnamic acids (HCAs) in polar and nonpolar solvents in order to rationalize the experimental order obtained in ethanol and to analyze the solvent effect on mechanism and radical scavenging capacity. The thermodynamics of the main mechanisms, namely, hydrogen atom transfer (HAT), sequential proton loss followed by electron transfer (SPLET), and single electron transfer followed by proton transfer (SET-PT) were investigated at the M05-2X/6-31[Formula: see text]G([Formula: see text]) level of theory using the SMD solvation model. This study shows that the SET-PT mechanism is disfavored in all media, whereas HAT is the most thermodynamically favored mechanism in gas phase and SPLET is the preferred reaction pathway in pentyl ethanoate, ethanol and water. The thermodynamically preferred site of antioxidant action and the radical scavenging order are predicted using the BDE[Formula: see text] and (PA[Formula: see text]ETE)[Formula: see text] descriptors corresponding to the HAT and SPLET mechanisms, respectively. The obtained results point out that the mechanism and the radical scavenging potency are influenced by solvent polarity and our predictions are in agreement with the experimental measurements performed in ethanol giving the following descending order: caffeic [Formula: see text] [Formula: see text] [Formula: see text]-coumaric acid. Our results also show that the ortho substitution of caffeic acid by strong electron donating groups leads to a notable increase of their radical scavenging activity and new potent HCA derivatives are designed.

Funder

Ministry of Higher Education and Scientific Research

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3