Computational Investigation of the Antioxidant Activity of Dihydroxybenzoic Acids in Aqueous and Lipid Media

Author:

Bellifa Khadidja1ORCID,Mekelleche Sidi Mohamed1

Affiliation:

1. Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen 13000, Algeria

Abstract

Reactive free radicals have both beneficial and destructive effects. Indeed, at physiological levels, free radicals help to preserve homeostasis by acting as signal transducers. However, excessive generation of free radicals can harm and damage membranes, proteins, and DNA, among other cell structures. Dihydroxybenzoic acids (DHBAs) have proven their antioxidant capacity against a large variety of free radicals, as well as their ability to inhibit or restrict reactive species overproduction. In this paper, a computational analysis of the antioxidant activity of a series of DHBAs in polar and nonpolar media was carried out at the DFT/M06-2X/6-[Formula: see text] level of theory. The implicit SMD solvation model was used in order to rationalize the experimental findings and to investigate the solvent effect on the mechanism and the radical scavenging ability. The obtained results put in evidence that HAT is the predominant mechanism in nonpolar media, whereas SPLET is more favored in polar environment. The BDE[Formula: see text], [Formula: see text], and [Formula: see text] descriptors are used to predict the most reactive hydroxyl groups and the antioxidant activity order of the studied DHBAs. Our results are in total agreement with experimental findings (inhibition of lipid peroxidation and scavenging of hydrogen peroxide). Moreover, this study shows that the substitution of the hydrogen atom by strong electron-donating groups, namely NMe2, in the ortho positions of the best experimental DHBAs leads to a significant enhancement of their antioxidant activity.

Funder

PRFU

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3