Affiliation:
1. Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
Abstract
In this paper, the use of the neural network (NN) method with exponential neurons for directly fitting ab initio data to generate potential energy surfaces (PESs) in sum-of-product form will be discussed. The utility of the approach will be highlighted using fits of CS2, HFCO, and HONO ground state PESs based upon high-level ab initio data. Using a generic interface between the neural network PES fitting, which is performed in MATLAB, and the Heidelberg multi-configuration time-dependent Hartree (MCTDH) software package, the PESs have been tested via comparison of vibrational energies to experimental measurements. The review demonstrates the potential of the PES fitting method, combined with MCTDH, to tackle high-dimensional quantum dynamics problems.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献