Accelerating wavepacket propagation with machine learning

Author:

Singh Kanishka12ORCID,Lee Ka Hei13,Peláez Daniel4ORCID,Bande Annika156ORCID

Affiliation:

1. Theory of Electron Dynamics and Spectroscopy Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Berlin Germany

2. Institute of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany

3. Fachbereich Physik Freie Universität Berlin Berlin Germany

4. CNRS, Institut des Sciences Moléculaires d'Orsay Université Paris‐Saclay Orsay France

5. Institute of Inorganic Chemistry Leibniz University Hannover Hannover Germany

6. Cluster of Excellence PhoenixD Leibniz University Hannover Hannover Germany

Abstract

AbstractIn this work, we discuss the use of a recently introduced machine learning (ML) technique known as Fourier neural operators (FNO) as an efficient alternative to the traditional solution of the time‐dependent Schrödinger equation (TDSE). FNOs are ML models which are employed in the approximated solution of partial differential equations. For a wavepacket propagating in an anharmonic potential and for a tunneling system, we show that the FNO approach can accurately and faithfully model wavepacket propagation via the density. Additionally, we demonstrate that FNOs can be a suitable replacement for traditional TDSE solvers in cases where the results of the quantum dynamical simulation are required repeatedly such as in the case of parameter optimization problems (e.g., control). The speed‐up from the FNO method allows for its combination with the Markov‐chain Monte Carlo approach in applications that involve solving inverse problems such as optimal and coherent laser control of the outcome of dynamical processes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3