Affiliation:
1. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
Abstract
The heme activate protein (HAP) is a model system for understanding protein–DNA interactions and allosteric mechanisms in gene regulation. Despite the wealth of biochemical data provided by extensive mutations of HAP, the specific recognition mechanism of the target DNA by HAP has remained elusive. This paper gives the results of a study using molecular dynamics simulations performed for a single DNA fragment (USACYC7) and three protein–DNACYC7complex crystal structures: the HAP-wt and two HAP mutants — HAP-PC7: S63G; HAP-18: S63R. Comparative molecular dynamics simulations reveal that the distributions of protein–DNA interactions recognizing the key base steps (CGC) are consistent with their transcriptional activities. Relative to the similar conformations of three bound DNA, the different flexibilities in involving DNA recognition regions: N-term Arm and Zn 2 Cys 6 Binuclear Cluster in three HAPs may result in a variety of protein–DNA recognitions. Despite different intensities of motions, the essential dynamics (ED) analysis shows that the internal motions of three protein–DNA complexes are similar: three proteins all slide along DNA to find their target sites. Thus, under this condition, during the recognition process, the flexibility of the DNA recognizing regions (N-term Arm and Zn 2 Cys 6 Binuclear Cluster regions) plays a crucial role in determining the abilities of protein's recognizing DNA: the higher is its flexibility, the faster it slides along the DNA to find the targeted DNA.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献