Author:
Lalonde B,Arcangioli B,Guarente L
Abstract
Several site-directed mutagenesis regimens were used to generate single- and multiple-base substitutions in the upstream activation site UAS1 of the Saccharomyces cerevisiae CYC1 gene. Mutations resulting in large reductions in activity of the site lie in two distinct regions. Six single-base changes in a region A, between -288 and -285, all resulted in a 15-fold reduction in activity. Synthetic sites built up solely of multimers of the -289 to -285 sequence ACCGA behaved as carbon catabolite-sensitive UASs. In addition, substitution mutations in a second region, at nucleotides -266 and -265, virtually eliminated UAS1 activity. These mutations abolished the binding of a heme-dependent protein factor in vitro. Thus, UAS1 contains two essential regions both of which are required for its activity.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献