Affiliation:
1. Department of Electrical Engineering, National Institute of Technology, Surat, India
2. Instrumentation and Control Engineering Division, NSIT Delhi (on lien), India
Abstract
The statistical properties of the Ornstein–Uhlenbeck (OU) process, a colored noise process, confirm the real noise statistics, since the real noise process has finite, nonzero correlation time. For this reason, it seems worthwhile to develop the estimation-theoretic scenarios of dynamical systems embedded in the colored noise environment as well. Importantly, the application of the Itô theory is not straightforward to the dynamical system in which the OU variable is a driving input. The augmented solution vector approach coupled with the Itô stochastic differential rule plays the pivotal role to develop the theory of the OU process-driven Duffing–van der Pol (DvdP) system of this paper. Notably, the noise analysis of the Duffing–van der Pol system, especially from the estimation-theoretic viewpoint, under the colored noise influence is not available yet in literature. Numerical experimentations with three different sets of data are demonstrated to examine the efficacy of analytical findings of this paper. The results of this paper will be of interest to noise scientists, especially research communities in systems and control, looking for the estimation-theoretic scenarios of the colored noise-driven "vector" stochastic differential system.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献