Probing multipartite entanglement, coherence and quantum information preservation under classical Ornstein–Uhlenbeck noise

Author:

Rahman Atta UrORCID,Javed Muhammad,Ji ZhaoXuORCID,Ullah ArifORCID

Abstract

Abstract We address entanglement, coherence, and information protection in a system of four non-interacting qubits coupled with different classical environments, namely: common, bipartite, tripartite, and independent environments described by Ornstein–Uhlenbeck (ORU) noise. We show that quantum information preserved by the four qubit state is more dependent on the coherence than the entanglement using time-dependent entanglement witness, purity, and Shannon entropy. We find these two quantum phenomena directly interrelated and highly vulnerable in environments with ORU noise, resulting in the pure exponential decay of a considerable amount. The current Markovian dynamical map, as well as suppression of the fluctuating character of the environments, are observed to be entirely attributable to the Gaussian nature of the noise. The increasing number of environments are witnessed to speed up the amount of decay. Unlike other noises, the current noise parameter’s flexible range is readily exploitable, ensuring long enough preserved memory properties. The four-qubit GHZ state, besides having a large information storage potential, stands partially entangled and coherent in common environments for an indefinite duration. In addition, we derive computational values for each system-environment interaction, which will help quantum practitioners to optimize the related classical environments.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference79 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3