Enhancing the atomic correlation dynamics under the effects of Stark shift and Kerr medium through multi-photon transitions

Author:

Elghaayda Samira1,ur Rahman Atta2,Mansour Mostafa1

Affiliation:

1. Laboratory of High Energy Physics and Condensed Matter, Department of Physics, Faculty of Sciences of Aïn Chock, Hassan II University, P.O. Box 5366 Maarif, Casablanca 20100, Morocco

2. School of Physics, University of Chinese Academy of Science, Yuquan Road 19A, Beijing 100049, P. R. China

Abstract

Enhancing and preserving the atomic correlation and entanglement is of significant utility in quantum information. To this aim, we study the temporal evolution of uncertainty-induced nonlocality ([Formula: see text]) and logarithmic negativity ([Formula: see text]) as measures of quantum correlations (QCs) and quantum entanglement (QE) between two effective atoms coupled to a bosonic reservoir in the absence of thermal fluctuations and in the presence of Kerr medium (KM) and Stark shift (SS) under which n-photon transitions are permitted. We explore how Markovian and non-Markovian regimes affect the temporal dynamics of atomic correlation and entanglement and its limitations. Our findings indicate that by adjusting the KM and SS parameters, the quantum correlations between the two atoms can be enhanced and maintained while displaying similar qualitative behavior. Notably, it was observed that the QCs and QE quantities are at their highest magnitudes in the non-Markovian regime when the strengths of both SS and KM are increased, implying that QCs and QE are well protected. In contrast to the typical view that protecting the QCs from decoherence that may be observed owing to environmental noise, we proposed a gainful way to reduce the atomic decoherence by adjusting the number of n-photon transitions. Our investigation reveals that in the non-Markovian regime, the considered system exhibits better resistance against decoherence in comparison to the Markovian regime, as evidenced by the significant amount of quantum correlations detected among the two effective atoms at a specific point in time.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3