Porcolation: An Invasion Percolation Model for Mercury Porosimetry

Author:

Bak Bendegúz Dezső1,Kalmár-Nagy Tamás1

Affiliation:

1. Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest 1111, Hungary

Abstract

Mercury porosimetry is utilized primarily in the oil industry to determine the pore size distribution of rock samples. During the process, mercury is forced into the sample with gradually increasing pressure and the volume of the injected mercury is measured vs. the applied pressure (the saturation curve). In practice, the saturation curve is assumed to be directly related the cumulative pore size distribution. However, this distribution does not coincide with the real one because of the “nonaccessibility” of pores at a given pressure. This motivates our goal to determine a more accurate cumulative pore size distribution. To achieve this, we treat the propagation of mercury as a percolation process (dubbed “porcolation” after PORosimetry perCOLATION). Porcolation is an external pressure-driven access-limited invasion percolation model where resistance values are assigned to sites/vertices. As pressure increases, the invading mercury occupies sites with smaller resistance values along paths that are connected to the “boundaries” of the network. Simulations are carried out on regular lattices, as well as on random graphs with prescribed degree distributions (representing the pore network of rock samples). An assumed pore size distribution is considered as an input/parameter of the simulations resulting in an output saturation curve. We determine the input–output mapping (homeomorphism) and utilize its inverse to correct the discrepancies between the assumed and actual pore size distributions. The results show nice agreement between experimental saturation curves and those obtained from our homeomorphism method.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3