Affiliation:
1. Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
Abstract
Cluster growth models are utilized for a wide range of scientific and engineering applications, including modeling epidemics and the dynamics of liquid propagation in porous media. Invasion percolation is a stochastic branching process in which a network of sites is getting occupied that leads to the formation of clusters (group of interconnected, occupied sites). The occupation of sites is governed by their resistance distribution; the invasion annexes the sites with the least resistance. An iterative cluster growth model is considered for computing the expected size and perimeter of the growing cluster. A necessary ingredient of the model is the description of the mean perimeter as the function of the cluster size. We propose such a relationship for the site square lattice. The proposed model exhibits (by design) the expected phase transition of percolation models, i.e., it diverges at the percolation threshold
. We describe an application for the porosimetry percolation model. The calculations of the cluster growth model compare well with simulation results.
Subject
Multidisciplinary,General Computer Science