Adaptive Fuzzy Logic Controllers Using Hybrid Genetic Algorithms

Author:

Shill Pintu Chandra1,Paul Animesh Kumar1,Murase Kazuyuki2

Affiliation:

1. Department of Computer Science and Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh

2. Department of System Design Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-910-8507, Japan

Abstract

In this paper, an integration of fuzzy logic controllers (FLCs) with hybrid genetic algorithms (HGAs) is developed with a view to make the design process fully automatic, without requiring any human expert and numerical data. Our approach consists of two phases: first phase involves selection and definition of fuzzy control rules as well as adjustment of membership functions parameters, while the second phase performs an optimal selection of membership function types corresponding to fuzzy control rules. Learning both parts concurrently represents a way to improve the accuracy of the FLCs to minimize the errors. It has been argued that the performance of FLCs greatly depends on the parameters as well as types of membership functions. Thus, the aforementioned HGAs are a viable solution for designing an efficient adaptive FLCs system. To demonstrate the effectiveness of the proposed method for optimal design of the FLCs, the proposed approach is applied to a well-known benchmark controller design tasks, car and truck-and-trailer like robot system. Simulation results illustrates that proposed optimization approach can find optimal fuzzy rules and their corresponding membership functions types with a high rate of accuracy. The new HGAs optimized adaptive FLCs outperforms not only a passive control strategy but also human-designed FLCs, a neural coded controller with clustering and a neural-fuzzy control algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3