Affiliation:
1. Department of Computer Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract
A new method for reinforcement fuzzy controllers is presented by this article. The method uses Artificial Bee Colony algorithm based on Q-Value to control reinforcement fuzzy system; the algorithm is called Artificial Bee Colony-Fuzzy Q learning (ABC-FQ). In fuzzy inference system, precondition part of rules is generated by prior knowledge, but ABC-FQ algorithm is responsible to achieve the best combination of actions for the consequence part of the rules. In ABC-FQ algorithm, each combination of actions is considered a food source for consequence part of the rules and the fitness level of this food source is determined by Q-Value. ABC-FQ Algorithm selects the best food resource, which is the best combination of actions for fuzzy system, using Q criterion. This algorithm tries to generate the best reinforcement fuzzy system to control the agent. ABC-FQ algorithm is used to solve the problem of Truck Backer-Upper Control, a reinforcement fuzzy control. The results have indicated that this method arrives to a result with higher speed and fewer trials in comparison to previous methods.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献