Artificial Bee Colony-Fuzzy Q Learning for Reinforcement Fuzzy Control (Truck Backer-Upper Control Problem)

Author:

Saeed Sima1,Niknafs Aliakbar1

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

A new method for reinforcement fuzzy controllers is presented by this article. The method uses Artificial Bee Colony algorithm based on Q-Value to control reinforcement fuzzy system; the algorithm is called Artificial Bee Colony-Fuzzy Q learning (ABC-FQ). In fuzzy inference system, precondition part of rules is generated by prior knowledge, but ABC-FQ algorithm is responsible to achieve the best combination of actions for the consequence part of the rules. In ABC-FQ algorithm, each combination of actions is considered a food source for consequence part of the rules and the fitness level of this food source is determined by Q-Value. ABC-FQ Algorithm selects the best food resource, which is the best combination of actions for fuzzy system, using Q criterion. This algorithm tries to generate the best reinforcement fuzzy system to control the agent. ABC-FQ algorithm is used to solve the problem of Truck Backer-Upper Control, a reinforcement fuzzy control. The results have indicated that this method arrives to a result with higher speed and fewer trials in comparison to previous methods.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3