Affiliation:
1. Universidade Federal de Pernambuco (UFPE), Centro de Informática (CIn), Av. Jornalista Anibal Fernandes, s/n – Cidade Universitária 50.740-560, Recife – PE, Brazil
Abstract
Outliers may have many anomalous causes, for example, credit card fraud, cyberintrusion or breakdown of a system. Several research areas and application domains have investigated this problem. The popular fuzzy c-means algorithm is sensitive to noise and outlying data. In contrast, the possibilistic partitioning methods are used to solve these problems and other ones. The goal of this paper is to introduce cluster algorithms for partitioning a set of symbolic interval-type data using the possibilistic approach. In addition, a new way of measuring the membership value, according to each feature, is proposed. Experiments with artificial and real symbolic interval-type data sets are used to evaluate the methods. The results of the proposed methods are better than the traditional soft clustering ones.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献