A Generalized Multivariate Approach for Possibilistic Fuzzy C-Means Clustering

Author:

Pimentel Bruno Almeida1ORCID,de Souza Renata M. C. R.1

Affiliation:

1. Universidade Federal de Pernambuco (UFPE), Centro de Informática (CIn), Av. Jornalista Anibal Fernandes, s/n - Cidade Universitária 50.740-560, Recife – PE, Brazil

Abstract

Fuzzy c-Means (FCM) and Possibilistic c-Means (PCM) are the most popular algorithms of the fuzzy and possibilistic clustering approaches, respectively. A hybridization of these methods, called Possibilistic Fuzzy c-Means (PFCM), solves noise sensitivity defect of FCM and overcomes the coincident clusters problem of PCM. Although PFCM have shown good performance in cluster detection, it does not consider that different variables can produce different membership and possibility degrees and this can improve the clustering quality as it has been performed with the Multivariate Fuzzy c-Means (MFCM). Here, this work presents a generalized multivariate approach for possibilistic fuzzy c-means clustering. This approach gives a general form for the clustering criterion of the possibilistic fuzzy clustering with membership and possibility degrees different by cluster and variable and a weighted squared Euclidean distance in order to take into account the shape of clusters. Six multivariate clustering models (special cases) can be derivative from this general form and their properties are presented. Experiments with real and synthetic data sets validate the usefulness of the approach introduced in this paper using the special cases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interval possibilistic C-means algorithm and its application in image segmentation;Information Sciences;2022-10

2. Fuzzy C-Means Clustering Algorithms with Weighted Membership and Distance;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2022-08

3. A hybrid algorithm for fuzzy clustering based on global and local membership degree;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

4. Measuring wind turbine health using fuzzy-concept-based drifting models;Renewable Energy;2022-05

5. A gradient ascent algorithm based on possibilistic fuzzy C-Means for clustering noisy data;Expert Systems with Applications;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3