An Adaptive Location-Aware Swarm Intelligence Optimization Algorithm

Author:

Jiang Shenghao1,Mashdoor Saeed2,Parvin Hamid345,Tuan Bui Anh6,Pho Kim-Hung7

Affiliation:

1. School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street Cambridge, MA 02318, USA

2. Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran

3. Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam

4. Faculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam

5. Department of Computer Science, Nourabad Mamasani Branch, Islamic Azad University, Mamasani, Iran

6. Department of Mathematics Education, Teachers College, Can Tho University, Can Tho City, Vietnam

7. Fractional Calculus, Optimization and Algebra Research Group, Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

Optimization is an important and decisive task in science. Many optimization problems in science are naturally too complicated and difficult to be modeled and solved by the conventional optimization methods such as mathematical programming problem solvers. Meta-heuristic algorithms that are inspired by nature have started a new era in computing theory to solve the optimization problems. The paper seeks to find an optimization algorithm that learns the expected quality of different places gradually and adapts its exploration-exploitation dilemma to the location of an individual. Using birds’ classical conditioning learning behavior, in this paper, a new particle swarm optimization algorithm has been introduced where particles can learn to perform a natural conditioning behavior towards an unconditioned stimulus. Particles are divided into multiple categories in the problem space and if any of them finds the diversity of its category to be low, it will try to go towards its best personal experience. But if the diversity among the particles of its category is high, it will try to be inclined to the global optimum of its category. We have also used the idea of birds’ sensitivity to the space in which they fly and we have tried to move the particles more quickly in improper spaces so that they would depart these spaces as fast as possible. On the contrary, we reduced the particles’ speed in valuable spaces in order to let them explore those places more. In the initial population, the algorithm has used the instinctive behavior of birds to provide a population based on the particles’ merits. The proposed method has been implemented in MATLAB and the results have been divided into several subpopulations or parts. The proposed method has been compared to the state-of-the-art methods. It has been shown that the proposed method is a consistent algorithm for solving the static optimization problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3