Optimization of CSO algorithm based on adaptive inertia weight coefficient

Author:

Suo Dongnan

Abstract

Abstract The traditional CSO algorithm is easy to fall into local extremum in optimization. In this paper, a CSO algorithm based on weight coefficient is proposed. In the CSO algorithm, the inertia weight coefficient is introduced into the hen position formula, and the learning factor influenced by the rooster is added to the chick position formula. Finally, using the idea of heredity, individuals with excellent fitness value are selected for crossover and mutation with a certain probability. Through the simulation comparison of five typical test functions, the simulation results show that the improved CSO algorithm can avoid local optimization, strengthen the global extreme value search ability, and improve the convergence speed and accuracy range of the algorithm.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference7 articles.

1. A Multiswarm Intelligence Algorithm for Expensive Bound Constrained Optimization Problems[J];Mashwani;Complexity,2021

2. An adaptive location-aware swarm intelligence optimization algorithm[J];Jiang;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,2021

3. Projection pursuit model for evaluation of flood and drought disasters based on chicken swarm optimization algorithm[J];Cui,2016

4. EXTRACTING DESIGN RECOMMENDATIONS FROM INTERACTIVE GENETIC ALGORITHM EXPERIMENTS: APPLICATION TO THE DESIGN OF SOUNDS FOR ELECTRIC VEHICLES[J];Souaille,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3