An Integrated Framework for COVID-19 Classification Based on Ensembles of Deep Features and Entropy Coded GLEO Feature Selection

Author:

Fayyaz Abdul Muiz1,Raza Mudassar2,Sharif Muhammad2,Shah Jamal Hussain2,Kadry Seifedine345,Martínez Oscar Sanjuán6

Affiliation:

1. Department of Computer Science, University of Wah, Wah Cantt 47040, Pakistan

2. Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt, 47040, Pakistan

3. Department of Applied Data Science, Noroff University College, Kristiansand, Norway

4. Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, 346, United Arab Emirates

5. Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon

6. Universidad Internacional de La Rioja (UNIR), La Rioja, Spain

Abstract

COVID-19 is a challenging worldwide pandemic disease nowadays that spreads from person to person in a very fast manner. It is necessary to develop an automated technique for COVID-19 identification. This work investigates a new framework that predicts COVID-19 based on X-ray images. The suggested methodology contains core phases as preprocessing, feature extraction, selection and categorization. The Guided and 2D Gaussian filters are utilized for image improvement as a preprocessing phase. The outcome is then passed to 2D-superpixel method for region of interest (ROI). The pre-trained models such as Darknet-53 and Densenet-201 are then applied for features extraction from the segmented images. The entropy coded GLEO features selection is based on the extracted and selected features, and ensemble serially to produce a single feature vector. The single vector is finally supplied as an input to the variations of the SVM classifier for the categorization of the normal/abnormal (COVID-19) X-rays images. The presented approach is evaluated with different measures known as accuracy, recall, F1 Score, and precision. The integrated framework for the proposed system achieves the acceptable accuracies on the SVM Classifiers, which authenticate the proposed approach’s effectiveness.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3