FML-Based Reinforcement Learning Agent with Fuzzy Ontology for Human-Robot Cooperative Edutainment

Author:

Lee Chang-Shing1ORCID,Wang Mei-Hui1,Tsai Yi-Lin1,Chang Wei-Shan1,Reformat Marek23,Acampora Giovanni4,Kubota Naoyuki5

Affiliation:

1. Department of Computer Science and Information Engineering, National University of Tainan, Tainan, Taiwan, ROC

2. Department of Electrical and Computer Engineering, University of Alberta, Canada

3. Information Technology Institute, University of Social Sciences, Poland

4. Department of Physics, University of Naples Federico II, Italy

5. Graduate School of Systems Design, Tokyo Metropolitan University, Japan

Abstract

The currently observed developments in Artificial Intelligence (AI) and its influence on different types of industries mean that human-robot cooperation is of special importance. Various types of robots have been applied to the so-called field of Edutainment, i.e., the field that combines education with entertainment. This paper introduces a novel fuzzy-based system for a human-robot cooperative Edutainment. This co-learning system includes a brain-computer interface (BCI) ontology model and a Fuzzy Markup Language (FML)-based Reinforcement Learning Agent (FRL-Agent). The proposed FRL-Agent is composed of (1) a human learning agent, (2) a robotic teaching agent, (3) a Bayesian estimation agent, (4) a robotic BCI agent, (5) a fuzzy machine learning agent, and (6) a fuzzy BCI ontology. In order to verify the effectiveness of the proposed system, the FRL-Agent is used as a robot teacher in a number of elementary schools, junior high schools, and at a university to allow robot teachers and students to learn together in the classroom. The participated students use handheld devices to indirectly or directly interact with the robot teachers to learn English. Additionally, a number of university students wear a commercial EEG device with eight electrode channels to learn English and listen to music. In the experiments, the robotic BCI agent analyzes the collected signals from the EEG device and transforms them into five physiological indices when the students are learning or listening. The Bayesian estimation agent and fuzzy machine learning agent optimize the parameters of the FRL agent and store them in the fuzzy BCI ontology. The experimental results show that the robot teachers motivate students to learn and stimulate their progress. The fuzzy machine learning agent is able to predict the five physiological indices based on the eight-channel EEG data and the trained model. In addition, we also train the model to predict the other students’ feelings based on the analyzed physiological indices and labeled feelings. The FRL agent is able to provide personalized learning content based on the developed human and robot cooperative edutainment approaches. To our knowledge, the FRL agent has not applied to the teaching fields such as elementary schools before and it opens up a promising new line of research in human and robot co-learning. In the future, we hope the FRL agent will solve such an existing problem in the classroom that the high-performing students feel the learning contents are too simple to motivate their learning or the low-performing students are unable to keep up with the learning progress to choose to give up learning.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3