Uncertainty Quantification of Load Effects under Stochastic Traffic Flows

Author:

Mu He-Qing12,Hu Qin34,Guo Hou-Zuo1,Zhang Tian-Yu1,Su Cheng12

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China

2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, P. R. China

3. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

4. Hubei Key Laboratory of Control Structure, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

Abstract

Load effect characterization under traffic flow has received tremendous attention in bridge engineering, and uncertainty quantification (UQ) of load effect is critical in the inference process. Bayesian probabilistic approach is developed to overcome the unreliable issue caused by negligence of uncertainty of parametric and modeling aspects. Stochastic traffic load simulation is conducted by embedding the random inflow component into the Nagel–Schreckenberg (NS) model, and load effects are calculated by stochastic traffic load samples and influence lines. Two levels of UQ are performed for traffic load effect characterization: at parametric level of UQ, not only the optimal parameter values but also the associated uncertainties are identified; at model level of UQ, rather than using a single prescribed probability model for load effects, a set of probability distribution model candidates is proposed, and model probability of each candidate is evaluated for selecting the most suitable/plausible probability distribution model. Analytic work was done to give closed-form solutions for the expression involved in both parametric and model UQ. In the simulated examples, the efficiency and robustness of the proposed approach are firstly validated, and UQ are performed to different load effect data achieved by varying the structural span length under the changing total traffic volume. It turns out that the uncertainties of load effects are traffic-specific and response-specific, so it is important to conduct UQ of load effects under different traffic scenarios by using the developed approach.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3