Static Behavior Prediction of Concrete Truss Arch Bridge Based on Dynamic Test Data and Bayesian Inference

Author:

Lu Pengzhen1,Li Dengguo1,Wu Ying2,Chen Yangrui1,Wang Jiahao1

Affiliation:

1. College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China

2. Jiaxing Nanhu University, Jiaxing 314001, Zhejiang Province, P. R. China

Abstract

The field load test is a direct and effective method for evaluating the performance of bridge structures. However, the existing bridge static load tests on site are costly, inefficient, and obstruct traffic; moreover, improper loading may also cause some damage to the bridge structure. This paper proposes a random model update method based on bridge dynamic load tests and the Bayesian inference as an alternative to the static load test. The Gaussian process model was used instead of the finite element model to reduce the cost of model calculation. Furthermore, choose the Markov Chain Monte Carlo (MCMC) method based on delay rejection adaptive Metropolis algorithm for Bayesian inference to improve the speed of the Bayesian method inferring the posterior probability density of updated parameters. First, the parameters to be updated for the bridge structure analysis model were determined based on the global sensitivity analysis method. Second, a uniform design sampling method was used to establish the Gaussian process optimization model to update the random model of the bridge structure. Finally, a reinforced concrete truss arch bridge was used to verify the correctness of the static load results of the bridge predicted by the random model update method based on dynamic load testing and Bayesian inference. The results show that the predicted results of the bridge static load test based on the dynamic load test and Bayesian reasoning method have an excellent agreement with the measured results, and this method can effectively overcome the adverse effects of the existing bridge static load test.

Funder

the Science and Technology Project of Zhejiang Provincial Department of Transportation

Scientific Research Fund of Zhejiang Provincial Education Department

Science and Technology Agency of Zhejiang Province

Jiaxing Science and Technology Bureau of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3