Experimental Study of Low Velocity Impact Response of Carbon/Basalt Hybrid Filament Wound Composite Pipes

Author:

Farhood Naseer H.1,Karuppanan Saravanan1,Ya Hamdan H.1,Ovinis Mark1

Affiliation:

1. Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, Malaysia

Abstract

In this study, the impact damage resistance of carbon/basalt hybrid fiber reinforced polymer pipes was experimentally investigated under low velocity impact loading. The composite pipes, composed of thin plastic liner of HDPE wrapped with eight layers of plies at constant winding angle of [[Formula: see text]55[Formula: see text]/90[Formula: see text]/[Formula: see text]55[Formula: see text]/90[Formula: see text]], were fabricated through filament winding technique. Eight pipe configurations with different stacking sequence and fiber content proportion were studied. Specimens cut from the original pipes were tested in a drop weight impact machine under two levels of impact energies, 50[Formula: see text]J and 100[Formula: see text]J, in order to predict the impact response and induced damage resistance of the pipe. The damage of the tested pipes was assessed based on the force-displacement, force-time histories, the energy absorption mechanism, as well as the micrographs captured by scanning electron microscope (SEM) for the specimens. The results indicate that the impact resistance behavior was highly affected by the stacking sequence of the layers and partly affected by the fiber content ratio. Positioning the basalt fiber on the impacted side enhances the energy absorption mechanism for both levels of imposed energies, while improving the impact resistance. The addition of 50% basalt fiber can slightly increase the impact resistance compared to the addition of 25% basalt fiber. However, specimens with 25% basalt fiber showed lower peak force, lower damage area and lower energy absorption.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3