A Novel Two-Stage Structural Damage Identification Method Based on Superposition of Modal Flexibility Curvature and Whale Optimization Algorithm

Author:

Huang Minshui1,Cheng Xihao1,Zhu Zhigang1,Luo Jin1,Gu Jianfeng1

Affiliation:

1. School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430073, Hubei, P. R. China

Abstract

A novel two-stage method is proposed to properly identify the location and severity of damage in plate structures. In the first stage, a superposition of modal flexibility curvature (SMFC) is adopted to locate the damage accurately, and the identification index of modal flexibility matrix is improved. The low-order modal parameters are used and a new column matrix is formed based on the modal flexibility matrix before and after the structure is damaged. The difference of modal flexibility matrix is obtained, which is used as a damage identification index. Meanwhile, based on SMFC, a method of weakening the “vicinity effect” is proposed to eliminate the impact of the surrounding elements to the damaged elements when damage identification is carried out for the plate-type structure. In the second stage, the objective function based on the flexibility matrix is constructed, and according to the damage location identified in the first stage, the actual damage severity is determined by the enhanced whale optimization algorithm (EWOA). In addition, the effects of 3% and 10% noise on damage location and severity estimation are also studied. By taking a simply supported beam and a four-side simply supported plate as examples, the results show that the method can accurately estimate the damage location and quantify the damage severity without noise. When considering noise, the increase of noise level will not affect the assessment of damage location, but the error of quantifying damage severity will increase. In addition, damage identification of a steel-concrete composite bridge (I-40 Bridge) under four damage cases is carried out, and the results show that the modified method can evaluate the damage location and quantify 5%–92% of the damage severity.

Funder

science research foundation of Wuhan Institute of Technology

Hubei Province, China

Hubei Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3