A Practical Wheel-Rail Interaction Element for Modeling Vehicle-Track-Bridge Systems

Author:

Gu Quan1,Liu Yongdou1,Guo Wei23,Li Weiquan1,Yu Zhiwu23,Jiang Lizhong23

Affiliation:

1. School of Architecture and Civil Engineering, Xiamen University, 361005, P. R. China

2. School of Civil Engineering, Central South University, 410075, P. R. China

3. National Engineering Laboratory for High-speed Railway Construction, 410075, P. R. China

Abstract

A novel practical element is presented for simulating the vertical wheel-rail interaction (WRI) of vehicle-track-bridge (VTB) coupling systems. The WRI is time- and location-varying, which makes the simulation of the VTB system complicated. The new element simulates the WRI using a location dependent internal resisting force, which enables the finite element (FE) model of the VTB system to remain unchanged in analysis. This element is capable of simulating the nonlinear WRI, the rail irregularity and the ‘additional’ displacement of the rail. The ‘additional’ displacement is the extra displacement caused by the WRI besides that interpolated from the element nodal displacements, which is usually ignored by existing models, but may be non-negligible in some cases. The WRI element is implemented into a general FE software framework, OpenSees, and verified by the dynamic analysis of a simply-supported beam subjected to a moving sprung mass. Furthermore, a realistic VTB system with a moving four-wheel vehicle is investigated to evaluate the cases where the additional displacement and nonlinear WRI should be considered. Finally, using another realistic VTB system subjected to rail irregularities and earthquakes, the effects of rail irregularity and earthquake on the dynamic responses of the WRI system are studied and compared.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3