A Novel Orthogonally Separated Isolation System and Its Seismic Performance on a Curved Concrete Bridge

Author:

Sha Ben1,Xing Chenxi2,Xu Junhong3,Wang Hao1,Li Aiqun4

Affiliation:

1. Key Laboratory of C&PC Structures of Ministry of Education, Southeast University, Nanjing 211189, P. R. China

2. School of Law, Southeast University, Nanjing 211189, P. R. China

3. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China

4. Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China

Abstract

The seismic response of curved concrete bridges is complex because of the geometric irregularity and induced planar rotation of the deck, which can magnify the displacement of the deck and deformation of the bearings. To control the planar rotation and thus the seismic response of the curved bridge, an orthogonally separated isolation system (OSIS) is proposed, which consists of the upper and lower isolation parts. With this, the planar relative displacement of the common isolation system is decomposed into the relative displacement of the upper part in one direction and the relative displacement of the lower isolation part in the orthogonal direction. Therefore, the planar rotation can be restrained and the seismic demand of the isolation bearing is decoupled. The analytical models of a curved bridge and the OSIS are established in OpenSees. A suite of 118 ground motions, of which 80 are ordinary and 38 are pulse-like, is selected as input with 24 different angles of incidence so as to consider the seismic variation. Nonlinear dynamic time-history analyses of the two models are conducted to evaluate the effectiveness of the OSIS. The results show that the OSIS can effectively decrease the deck displacement, the bearing deformation and the pier column shear force, especially under the ground motions with higher intensities, while the shear force increases slightly on the abutment.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3