Affiliation:
1. State Key Laboratory of Disaster, Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
Abstract
Due to their sensitivity to wind, the design of large-span roofs is generally governed by wind loads. For some flexible large-span roofs with low damping and concentrated modes, the effect of multi-mode coupling should be taken into account in computing the resonant buffeting response and equivalent static wind loads. Such an effect is considered by the modified SRSS method in this paper via the modal coupling factor. Based on the same SRSS method, the equivalent static wind loads combining the mean, background, and resonant components, are computed. Particularly, the background and resonant components are computed by the LRC method and the equivalent inertia force method considering the modal coupling effects by the modified SRSS method, respectively. The method is then applied to the computation of wind-induced vibration responses and equivalent static wind load distributions of a real large-span roof. The results show that the modal coupling effect on the resonant component can be identified by the present method with high accuracy.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献