3D Vibration Analysis of Combined Shells of Revolution

Author:

Kang Jae-Hoon1

Affiliation:

1. Department of Architectural Engineering, Chung-Ang University, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756, South Korea

Abstract

A three-dimensional (3D) method of analysis is presented for determining the natural frequencies and the mode shapes of combined hemispherical–cylindrical shells of revolution with and without a top opening by the Ritz method. Instead of mathematically two-dimensional (2D) conventional thin shell theories or higher-order thick shell theories, the present method is based upon the 3D dynamic equations of elasticity. Mathematically, minimal or orthonormal Legendre polynomials are used as admissible functions in place of ordinary simple algebraic polynomials which are usually applied in the Ritz method. The analysis is based upon the circular cylindrical coordinates instead of the shell coordinates which are normal and tangent to the shell mid-surface. Strain and kinetic energies of the combined shell of revolution with and without a top opening are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the Legendre polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies. Numerical results are presented for the combined shells of revolution with or without a top opening, which are completely free and fixed at the bottom of the combined shells. The frequencies from the present 3D Ritz method are compared with those from 2D thin shell theories by previous researchers. The present analysis is applicable to very thick shells as well as very thin shells.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3