A Unified Solution for Free Vibration Analysis of Beam-Plate-Shell Combined Structures with General Boundary Conditions

Author:

Zhang Shuai12,Zhu Xiang132,Li Tianyun132,Yin Caiyu132,Li Qingsheng12,Chen Rugang4

Affiliation:

1. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

2. Hubei Key Laboratory of Naval, Architecture and Ocean Engineering Hydrodynamics, Wuhan 430074, P. R. China

3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, P. R. China

4. China Ship Development and Design Center, Wuhan 430074, P. R. China

Abstract

A semi-analytical method is presented to analyze free vibration response of beam-plate-shell combined structures with general boundary conditions. Based on the beam-plate-shell energy theory, the coupled annular plate-conical-cylindrical-spherical shell with stiffened rings and bulkheads regarded as the theoretical model is constructed. The unified displacement admissible functions of each substructure are expanded as modified Fourier series and auxiliary convergence functions along generatrix direction and Fourier series along circumferential direction. Virtual spring technology is adopted to express the energy stored at the junction of adjacent substructures and both boundaries. The energy variational procedure and Ritz method are used to obtain the vibrational governing equation of the combined structure. The present method provides an analytical way for the vibrational response of complicated combined structures. The convergence, accuracy and reliability are validated by comparing the free vibrational response with those of the references and finite element method. Some numerical examples show effects of different boundary conditions on the free vibration. And the influence of stiffened rings and bulkheads treated as Euler-beams and annular plates is also discussed from quantity, size and spatial distribution, offering a feasible way to design the reinforced structures and optimize the bulkheads in engineering problems.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3