Affiliation:
1. The Key Laboratory of Urban Security and Disaster, Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, P. R. China
2. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, P. R. China
Abstract
There are three kinds of isolators commonly used in storage tank, friction pendulum bearing (FPB), laminated rubber bearing (LRB), and variable curvature friction pendulum bearing (VCFPB), respectively. Real-time hybrid simulation is conducted in this paper to compare the seismic performance of the storage tank isolated by the above three types of bearings. The storage tank is used as the physical substructure for experimental testing, and the isolators are adopted as the numerical substructure for numerical simulation. The isolation performance is estimated by the following perspectives: deformation of the isolator, shear force, overturning moment, and input energy. Test results show that the deformation of LRB is the largest, which can be twice that of FPB, and that larger deformation will enlarge the seismic energy input into the storage tank. Moreover, the low-frequency components of shear force and overturning moment are amplified by LRB. In contrast, the FPB and VCFPB have a good performance on all frequency bands. Particularly, the softening mechanism enables VCFPB to have better seismic performance and have a reduction rate of about twice that of LRB.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献