Experimental Study on the Mechanical Properties of Nylon Fabric-Reinforced Elastomeric Isolators (N-FREIs)

Author:

Wu Yifeng1ORCID,Fan Kai1ORCID,Li Aiqun12,Sha Ben3,Si Mingfei1,Lu Song1,Wang Hao2ORCID

Affiliation:

1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, P. R. China

2. School of Civil Engineering, Southeast University, Nanjing 210096, P. R. China

3. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China

Abstract

In recent decades, carbon fiber, glass fiber, polyester and Kevlar fiber have been utilized to replace the steel shims in conventional steel-reinforced elastomeric isolators (SREIs). This study chose nylon fabrics owing to their extreme low cost, low elastic modulus and good adhesion to rubber, and nine nylon fabric-reinforced elastomeric isolators (N-FREIs) were manufactured with different design parameters. Compression and compression shear tests were, respectively, conducted to investigate the mechanical properties together with their influential factors of the N-FREIs. Results show that the vertical load-carrying capacity of the isolator is high enough to sustain a compressive stress of 10[Formula: see text]MPa without visible damage. The compressive stiffness of N-FREI is much smaller than that of SREI, and the vertical damping ratio under cyclic compression reaches up to 7%. In the compression shear tests, the shear stiffness of the isolator first decreases and then increases as the shear strain increases within 300%, and the equivalent damping ratio varies between 9% and 14% for different sizes of the isolator. Additionally, due to the flexibility and extensibility of the low modulus nylon fabric, both vertical and horizontal stiffness decrease a bit with an increase in the number of fabric layers. Finally, a formula for calculating the horizontal stiffness of N-FREI is proposed, it provides a comprehensive mathematical model to predict the behavior of the N-FREI under horizontal shear conditions.

Funder

Science and Technology Project of the Beijing Municipal Commission of Education

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Pyramid Talents Development Project-Outstanding Scholar of BUCEA

BUCEA Post Graduate Innovation

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3