EXPERIMENTS ON BUCKLING AND POSTBUCKLING OF THIN-WALLED CFRP STRUCTURES USING ADVANCED MEASUREMENT SYSTEMS

Author:

DEGENHARDT RICHARD1,KLING ALEXANDER1,KLEIN HERMANN1,HILLGER WOLFGANG1,GOETTING HANS CHRISTIAN1,ZIMMERMANN ROLF1,ROHWER KLAUS1,GLEITER ANDREAS2

Affiliation:

1. DLR, Institute of Composite Structures and Adaptive Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany

2. University of Stuttgart, Institute of Polymer Technology (IKT), Department of Non-destructive Testing (ZfP), Pfaffenwaldring 32, 70569 Stuttgart (Vaihingen), Germany

Abstract

The aircraft and space industry strives for significantly reduced development and operating costs. Reduction of structural weight at safe design is one possibility to reach this objective which is aimed by the following two running research projects: the EC project "COCOMAT" and the ESA study "Probabilistic Aspects of Buckling Knock Down Factors". These projects develop improved concepts and tools for a fast and reliable simulation of the buckling and the postbuckling behavior of thin-walled structures up to collapse, respectively, which allow the exploitation of considerable reserves in primary fibre composite structures in aerospace applications. For the validation of the concepts and tools, a sound database of experiments is needed which is also performed within these projects. This paper focuses on the experimental activities within these projects performed at the buckling test facility of the Institute of Composite Structures and Adaptive Systems (DLR). It presents an overview about the DLR buckling, postbuckling and collapse tests which are already finished and gives an outlook to the results which are expected until the end of the running projects. This paper explains the working of the buckling test facility, the advanced measurement systems, which are running in parallel to the tests, and gives exemplarily two test results. The structures considered are unstiffened cylinders (ESA study) as well as panels, which are understood as sections of cylinders, stiffened by stringers (COCOMAT project). The unstiffened cylinders are more related to space applications (e.g. Ariane busters or parts of the international space station ISS) and the stiffened panels focus more on aircraft structures (e.g. fuselage). The load case considered for all investigations presented in this paper is axial compression under static loading although the test facility is also ready to apply torsion and internal pressure, as well as dynamic axial impact.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3