Affiliation:
1. School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
2. Tianjin Chengjian University, Tianjin Key Laboratory of Civil Structure Protection and Reinforcement, Tianjin, 300384, P. R. China
3. School of Electrical, Mechanical and Mechatronic Systems, University of Technology Sydney, NSW 2007, Australia
Abstract
Magnetorheological elastomer (MRE) isolator has been proved as a promising semi-active control device for structural vibration control. For its engineering application, developing an accurate and robust model is definitely necessary and also a challenging task. Most of the present models, belonging to parametric models, need to identify various model parameters and sometimes are not capable of perfectly capturing the unique characteristics of the device. In this work, a novel nonparametric model is proposed to characterize the inherent dynamics of the MRE isolator with the features of hysteresis and nonlinearity. Initially, dynamic tests are conducted to evaluate the performance of the isolator under various loading conditions, including harmonic, random, and seismic excitations. Then, on the basis of the captured experimental results, a hybrid learning method is designed to forecast the nonlinear responses of the device with known external inputs. In this method, a type of single hidden layer feed-forward network, called extreme learning machine (ELM), is developed to forecast the nonlinear responses (shear force) of the device with captured velocity, displacement, and current level. To obtain optimal performance of the developed model, an improved binary-coded discrete cat swarm optimization (BCDCSO) method is adopted to select optimal inputs and neuron number in the hidden layer for the network development. The performance of the proposed method is verified through the comparison between experimental results and model predictions. Due to the noise influence in the practical condition, the robustness of the proposed method is also validated via adding noise disturbance into the supplying currents. The results show that the proposed method outperforms the standard ELM in terms of characterization of the MRE isolator, even though the captured responses are polluted with external measurement noises.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Building and Construction,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献