A Novel Approach to Combinatorial Problems: Binary Growth Optimizer Algorithm

Author:

Leiva Dante1,Ramos-Tapia Benjamín1ORCID,Crawford Broderick1ORCID,Soto Ricardo1ORCID,Cisternas-Caneo Felipe1ORCID

Affiliation:

1. Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2241, Valparaíso 2362807, Chile

Abstract

The set-covering problem aims to find the smallest possible set of subsets that cover all the elements of a larger set. The difficulty of solving the set-covering problem increases as the number of elements and sets grows, making it a complex problem for which traditional integer programming solutions may become inefficient in real-life instances. Given this complexity, various metaheuristics have been successfully applied to solve the set-covering problem and related issues. This study introduces, implements, and analyzes a novel metaheuristic inspired by the well-established Growth Optimizer algorithm. Drawing insights from human behavioral patterns, this approach has shown promise in optimizing complex problems in continuous domains, where experimental results demonstrate the effectiveness and competitiveness of the metaheuristic compared to other strategies. The Growth Optimizer algorithm is modified and adapted to the realm of binary optimization for solving the set-covering problem, resulting in the creation of the Binary Growth Optimizer algorithm. Upon the implementation and analysis of its outcomes, the findings illustrate its capability to achieve competitive and efficient solutions in terms of resolution time and result quality.

Publisher

MDPI AG

Reference65 articles.

1. On the Computational Complexity of Combinatorial Problems;Karp;Networks,1975

2. Karp, R.M. (2009). 50 Years of Integer Programming, Springer.

3. Cook, S.C. (1971, January 3–5). The Complexity of Theorem Proving Procedures. Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, Shaker Heights, OH, USA.

4. Characterizations of Pushdown Machines in Terms of Time-Bounded Computers;Cook;J. ACM,1971

5. Jünger, M., Reinelt, G., and Rinaldi, G. (1995). Handbooks in Operations Research and Management Science, Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3