Affiliation:
1. School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, P. R. China
Abstract
Let [Formula: see text] be a finite geometric separable extension of the rational function field [Formula: see text], and let [Formula: see text] be a finite cyclic extension of [Formula: see text] of prime degree [Formula: see text]. Assume that the ideal class number of the integral closure [Formula: see text] of [Formula: see text] in [Formula: see text] is not divisible by [Formula: see text]. Using genus theory and Conner–Hurrelbrink exact hexagon for function fields, we study in this paper the [Formula: see text]-class group of [Formula: see text] (i.e. the Sylow [Formula: see text]-subgroup of the ideal class group of [Formula: see text]) as Galois module, where [Formula: see text] is the integral closure of [Formula: see text] in [Formula: see text]. The resulting conclusion is used to discuss the relations of class numbers for the biquadratic function fields with their quadratic subfields.
Publisher
World Scientific Pub Co Pte Lt
Subject
Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献