Infinite families of Artin–Schreier function fields with any prescribed class group rank

Author:

Yoo Jinjoo,Lee Yoonjin

Abstract

Abstract We study the Galois module structure of the class groups of the Artin–Schreier extensions K over k of extension degree p, where $k:={\mathbb F}_q(T)$ is the rational function field and p is a prime number. The structure of the p-part $Cl_K(p)$ of the ideal class group of K as a finite G-module is determined by the invariant ${\lambda }_n$ , where $G:=\operatorname {\mathrm {Gal}}(K/k)=\langle {\sigma } \rangle $ is the Galois group of K over k, and ${\lambda }_n = \dim _{{\mathbb F}_p}(Cl_K(p)^{({\sigma }-1)^{n-1}}/Cl_K(p)^{({\sigma }-1)^{n}})$ . We find infinite families of the Artin–Schreier extensions over k whose ideal class groups have guaranteed prescribed ${\lambda }_n$ -rank for $1 \leq n \leq 3$ . We find an algorithm for computing ${\lambda }_3$ -rank of $Cl_K(p)$ . Using this algorithm, for a given integer $t \ge 2$ , we get infinite families of the Artin–Schreier extensions over k whose ${\lambda }_1$ -rank is t, ${\lambda }_2$ -rank is $t-1$ , and ${\lambda }_3$ -rank is $t-2$ . In particular, in the case where $p=2$ , for a given positive integer $t \ge 2$ , we obtain an infinite family of the Artin–Schreier quadratic extensions over k whose $2$ -class group rank (resp. $2^2$ -class group rank and $2^3$ -class group rank) is exactly t (resp. $t-1$ and $t-2$ ). Furthermore, we also obtain a similar result on the $2^n$ -ranks of the divisor class groups of the Artin–Schreier quadratic extensions over k.

Publisher

Canadian Mathematical Society

Subject

General Mathematics

Reference25 articles.

1. l-Class groups of cyclic function fields of degree l

2. The genus fields of Kummer function fields

3. The generalized Rédei-matrix for function fields

4. The generalized Rédei-matrix

5. [21] Yoo, J. , Class groups of cyclic extensions over the rational function field, Dissertation, Ewha Womans University, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3