Concentric Dual-Chamber Pneumatic Artificial Muscles: Miniature Actuators Designed for Use in Minimally Invasive Surgical Instruments

Author:

Lathrop Robert1ORCID,Ourak Mouloud1,Deprest Jan2,Poorten Emmanuel Vander1

Affiliation:

1. Mechanical Engineering Department, KU Leuven, Celestijnenlaan 300B, 3001 Leuven, Belgium

2. Department of Obstetrics and Gynecology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium

Abstract

Development of high-performance flexible surgical instruments is important to simplify and enable new minimally invasive surgical procedures. New actuation technologies are necessary to produce flexible instrumentation that is capable of accessing difficult-to-reach anatomy and performing laborious tasks without damaging delicate tissues. Recently, concentric McKibben muscles and dual-chamber pneumatic artificial muscles (PAMs) have been proposed for use in miniature flexible robotic surgical instrumentation. In this study, several varieties of a hybrid concentric dual-chamber PAM design are built and their force generation and stroke length are compared to a contractile McKibben muscle. The concentric dual-chamber PAM is designed to provide surgical access for large diameter (1.5–2.0 mm) instruments to be delivered to the surgical site in a pneumatically sealed actuator suitable for miniaturization and integration into surgical devices used in fluid environments (fetal applications in particular). Force output of the concentric dual-chamber PAM is modeled and compared to experimental results. Initial results suggest that the newly introduced design produces a higher actuation force per unit length than traditional McKibben muscles. The prototype dual-channel PAM produced a maximum 15.25 N of force and 8.39 mm of stroke, in comparison to 13.31 N of force and 19.3 mm of stroke produced by a traditional contractile McKibben muscle of the same length, outer diameter, and materials.

Funder

Onderzoeksraad, KU Leuven

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,Human-Computer Interaction,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3