Localizing Submerged Acoustic Sources Under Adverse Conditions

Author:

Collins Michael D.1ORCID,Fialkowski Laurie T.1,Lingevitch Joseph F.1

Affiliation:

1. Code 7160, Acoustics Division, Naval Research Laboratory, Washington, DC 20375, USA

Abstract

This paper reviews various approaches for localizing submerged acoustic sources under adverse conditions. It is essential to obtain data of the highest possible quality when there are adverse conditions, such as uncertainties in the environment, source motion, and low signal-to-noise ratio. Focalization is an approach in which the source location and environmental parameters are treated as unknowns. Due to a parameter hierarchy in which source location outranks environmental parameters, there may be many realizations of the environment that bring the source into focus; the ambiguity in the environment can be an advantage if the primary objective is to localize the source. Environmental uncertainty is often associated with environmental complexity, which can be an advantage by reducing the ambiguity of the source location. Obtaining a high-quality estimate of the covariance matrix may be difficult when there is source motion, but the complexity of the received field from a moving source is another factor that can reduce ambiguity. It may be possible to localize a source that is buried in noise when an estimate of the noise covariance matrix is available. During the development of approaches for localizing submerged sources, much of the focus has been on one-dimensional vertical arrays. An extension of the multi-valued Bartlett processor to the case of a rectangular array was designed to take advantage of the extra dimension of the array and appears to have the potential to be the most powerful combination of hardware and signal processing to date.

Funder

U.S. Naval Research Laboratory

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Computer Science Applications,Acoustics and Ultrasonics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Through the sensor estimation of sound speed profiles;The Journal of the Acoustical Society of America;2024-02-01

2. Wave Source Localization Among Multiple Knife-Edges;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3