Through the sensor estimation of sound speed profiles

Author:

Edelmann Geoffrey F.1,Lingevitch Joseph F.1,Gemba Kay L2ORCID

Affiliation:

1. Naval Research Laboratory 1 , Code 7160, Washington, DC 20375, USA

2. Department of Physics, Naval Postgraduate School 2 , Monterey, California 93940, USA

Abstract

A through-the-sensor method to sense the local sound speed profile (SSP) using measured acoustic wave numbers via an array of hydrophones is proposed. Ocean sounds can be treated as acoustic energy trapped as discrete modes within the water column. A Fredholm integral equation of the first kind relates the linearized (perturbative) sound speed corrections to the wave number differences between the measured values and those calculated from an acoustic kernel. Thus, a method to exploit environmental information deduced from different in situ sonar systems is proposed. Though this inversion can be unstable and non-unique, recent improvements in sparse inversions can lead to robust estimates even without an accurate starting SSP. An iterative algorithm using multiple acoustic frequencies is beneficial to achieve convergence and stability for larger sound speed corrections. This paper will compare broadband incoherent L2- and coherent L1-inversion results. Careful consideration must be made of the acoustic frequency, number of modes, a priori environmental information (e.g., water depth), and array length. The method will be first demonstrated on simulations and recordings from the Littoral Depth Discrimination Experiment 2012 (LIDDEX12) data set.

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3